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Introduction

● Touch is a principal modality when humans 
interact with their pets

● Pets can sense their owner's emotional state
– We would like pet robots to do the same

● It is essential to design pet robots that respond 
to touch
– and infer emotional state of the user via touch
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Pet robot examples

Huggable (2006)
MIT Media Lab

PARO (1996)
AIST, Japan
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Pet robot examples

Probo (2008)
VU Brussel

AIBO (2001)
Sony
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Pet robot examples

Haptic Creature (2008)
The University of British Columbia 
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Problem definition

● Affect recognition through touch
● Touch is more common in human-pet 

interaction than in human-human interactions
● We use the Haptic Creature as the robot 

platform



TGMIS 2014 7

Haptic Creature

● Interaction is limited to 
touch only

– breathing

– purring

– modulating ear 
stiffness

● force sensing resistors 
(FSR) and accelerometer 
to sense touch
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Affect space

● Nine emotion words were 
used in the experiments

● Arranged in a 3x3 grid 
structure

– arousal-valence space

– horizontal axis: valence
● negative to positive

– vertical axis: arousal
● low to high
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Experiment

● 31 participants presented with emotion labels
● For each label, participants evaluated the 

likelihood of performing 30 different hand 
gestures (1: Very unlikely, 5: Very likely)

● If they responded 4 or 5, they were asked to 
perform the gesture on the robot

● FSR and accelerometer signals were recorded
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Results

● Classification using 
Random Forests

● Success rate: 36%
● Many “near misses” 

in the affect space
– Need to measure the 

degree of 
misclassifications 
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Confusion matrix visualization

between-subject within-subject
hypothetical perfect 

classification
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Distance functions

● We defined distance functions to evaluate the 
degree of misclassification
– Discrete distance (correct: 0, wrong: 1)

– Euclidean distance

– Euclidean distance squared 
● Does not satisfy the triangle inequality; not a “proper” 

distance in the mathematical sense

– Valence loss
● disregards valence, focuses on arousal 

– Arousal loss
● disregards arousal, focuses on valence
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Results
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Results

● “Near misses” in 
arousal are more 
likely in high arousal 
region

● “Near misses” in 
valence are more 
likely in positive 
valence region 
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Hand gesture recognition
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Hand gestures and affect

● The results of the questionnaire give a relation 
between hand gestures and affect
– The numbers can be interpreted as prior 

probabilities

– Affect information can be inferred from gesture 
information and can be fused with direct affect 
recognition results
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Hand gestures and affect
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Hand gestures and affect
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Results

● 26 hand gestures were classified with 32% 
correct recognition rate
– Similar hand gestures were confused (massage 

and rub, pat and tap, etc.)

● Fusing gesture data did not improve the 
performance

● Assuming gesture recognition is perfect, the 
performance increased by 10%  (38%)
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Summary

● Classified 9 different emotional states using 
touch sensors and accelerometer
– 35% performance achieved (comparable with 

human-human touch interaction studies' results)

● “Near misses” in wrong classifications were 
observed in high arousal and positive valence 
zones

● Marginal performance increase observed when 
hand gesture recognition results were fused 
with direct affect recognition results
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Future work

● Insufficient coverage of FSR sensors
● Need new sensor technologies for this 

emerging area
– Cover a compound curved surface

– Measure touch location, pressure

– Handle multitouch

– Able to work when placed on a “rib cage”

– Pleasant to the touch, or allow placement under fur 
cover



TGMIS 2014 23

Future work

● Need to find most discriminative features
– Deep learning, unsupervised feature learning 

approaches

– Finding most discriminative features would aid 
sensor design
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