Multimodal Human State & Trait **Recognition:** Quo plures, eo feliciores?

Björn Schuller @ TGMIS 2014

intelligent Audio Engineering

Imperial College))) audeering London

Introduction

ТШ

ТΠ

2000

Research Assistant

Björn Schuller

Imperial College London

Professor

- C

2012

Visitor

2009

Presenter.

> 430 > 710 h-ind Presi Edito	0 publications. 00 citations. ex = 41. dent AAAC. or in Chief IEEE T-A	With the second se		environmentational detection ffect Detection om Natural anguage	Is to find the second
Diploma 1999	PhD 2006	Habilitat 2	ion 012	JOANNEUM	() aude

Lecturer

2006

Björn Schuller

States & Traits.

Holism.

Applications.

- HCI Sensitive Artificial Listeners, attention analysis, call centres, car, ...
- HRI humanoid robotics
- Multimedia video content representation, affective audio/video retrieval, coding
- Entertainment technology gaming, arts
- Learning environments episodic learning, coaching on paralinguistics
- Smart home ambience control
- Monitoring safety, assessment, customers
- Clinical & biomedical studies speech disorders, Altzheimer, Parkinson, stress/pain monitoring, Autism-related assistive technology, Rett and Fragile X syndrome, sleep disorders

Products.

Multimodal Yet...?

•

Recent Cases

Feature Brute-Forcing.

openSMILE 2.0: Audio/Visual + X

Distributed Feature Extractor (Android / C++)

Multithreading Memory efficient

#features	RTF
10k	2%
500k	3%

"Recent Developments in openSMILE, the Open-Source Multimedia Feature Extractor", **ACM Multimedia**, 2013. (2nd place ACM MM Open Source Software Competition in 2010 and 2013)

•

Detection

AVEC 2011.

Audiovisual Emotion

L(G)BP, optical flow +

2: Tracking

AVEC 2011/12: 50,4k Turns

acoustic + vocalisations + text

3: Rectification

Björn Schuller

	. V .			
WA [%]	Activation	Expectation	Power	Valence
Audio	71.2	63.7	62.2	70.2
Video	48.6 (53.2)	68.6	57.9	69.6
All	70.3	64.1	57.5 (62.9)	69.6

tilt θ

"LSTM-Modeling of Continuous Emotions in an Audiovisual Affect Recognition Framework", Image & Vision Computing Journal, 31(2): 153-163, 2012. (Best Result AVEC Challenge)

AVEC 13/14.

Data

Audio-visual depressive language corpus (AVDLC) 340 video clips of subjects performing a HCI task, Total duration 240 hours, 292 subjects

Depression / Affect Recognition

Beck Depression Inventory (BDI): 0 – 63

MAE	Depression		
Winner	6.5		

"AVEC 2013 - The Continuous Audio/Visual Emotion and Depression Recognition Challenge", **ACM Multimedia**, 2013.

"MAPTRAITS 2014: The First Audio/Visual Mapping Personality Traits Challenge", **ACM ICMI**, 2014.

UNIVERSITÄT

Björn Schuller

Sentiment.

 Audiovisual Sentiment Polarity Multi-Modal Movie Opinion Database 370 videos: YouTube & ExpoTV

Amateur Movie Reviews

UA [%]	Audio	Video	AV	LAV
Polarity	64.4	61.2	66.2	73.0

"YouTube Movie Reviews: In, Cross, and Open-domain Sentiment Analysis in an Audiovisual Context" *IEEE Intelligent Systems Magazine*, 2013.

Björn Schuller

Emotion.

- Audiovisual + Physiology (ECG/EDA)
 - **RECOLA** Database

27 subjects, 5 min each, 6 raters

Collaborative Interactions

ComParE, 15 AUs, 3x Headpose, 28xphysio

CC [%]	Arous	Valen			
Audio	78.8	34.3			
Video	42.7	43.1			
All 80.4 52					
Fusion better late					

Valence longer window sizes

"Prediction of Asynchronous Dimensional Emotion Ratings from Audiovisual and Physiological Data" **Pattern Recognition Letters**, 2014.

Björn Schuller

Biometrics.

• **Biometrics from Walking Patterns** GAID database (Kinect): 305 subjects Words: LIWC, Video: LBP

(a) GEI	(b) depth-G	EI (c) ((c) GEV	
UA [%]	Words	Audio	Video	WAV
Age	64.6	62.7	71.0	72.9
Sex	75.4	93.2	81.4	-
Race	67.1	52.3	70.3	73.4

"The TUM Gait from Audio, Image and Depth (GAID) Database: Multimodal Recognition of Subjects and Traits", **Journal of Visual Communication and Image Representation**, 2013.

"Speaker Trait Characterization in Web Videos: Uniting Speech, Language, and Facial Features" *IEEE ICASSP*, 2013.

Attention.

Attention Recognition

Audi A6, real street Audi Multimedia System On-board computing Off-board analysis 30 drivers (23-59 years) 8 typical interaction tasks CAN-bus + inner camera

"On-line Driver Distraction Detection using Long Short-Term Memory", *IEEE Transactions on Intelligent Transportation Systems*, 12(2): 574-582, 2011.

	UA [%]
hi/low	95.0
hi/med/low	70.2

• Testing

Driver-independent

Attention.

Features (CAN-bus + Sensors)

Steeringwheel angle	(25.0%)
Pedal position	(3.1%)
Speed	(5.2%)
Driving angle	(7.9%)
Lateral deviation	(5.7%)
Head rotation	(53.1%)

LLD x 3 and 55 Functionals Extremes (7), Regression (9), Means (7) Percentiles (6), Peaks (4), other (22)

Discussion

Discussion

• More = more?

Often not...

Often not very significant

By performance on datasets

Lack of usability studies in the real world

Weak/Strong Modalities?

Often in the literature "favourite modality" + "other one(s)"

Same Data

Usually trained across modalities for same data What if not?

Discussion

Complementarity

Video/linguistics for valence, audio/physio for arousal, etc. But hardly approaches that *explicitly* use this fact

• Fail-Safer?

Occlusions, noise, non-presence such as silence, etc,. But few results/tests with actual drop-outs What about culture / languages?

Ground Truth

Made for which modality/ies?

Mixed Fusion Approaches

Database dependent (RECOLA vs AVIC, etc.)?

Discussion

- It's about Timing
 Per modality
 - Per state/trait

• What about other factors?

Speed, memory, privacy, confidence measures, distribution, ...

Transfer Learning

Possible across modalities?

• Even More?

Modalities (e.g., touch, smartphone sensors, etc.) States & traits (many not approached multimodal, yet)

Björn Schuller

"The Computational Paralinguistics Challenge", IEEE Signal Processing Magazine, 29(4): 2-6, 2012.

Speech	29(4): 2-6, 20)12.	, including a second		ssing ma	
		# Classes	UAR/*UAAUC/+0	C [%]	65	60
201	4 Cognitive Load	3		68.9	00	651
	Physical Load	2		77.5	F	0
201	3 Social Signals	2x2		92.7*	30	55
	Conflict	2		85.9	R	Po
	Emotion	12	PN C	46.1	Po	
	Autism	4	Stor V	69.4		Po
201	2 Personality	5x2	7 101-	70.4		
	Likability	2		68.7		Pa
	Intelligibility	2	A A	76.8	65	
201	1 Intoxication	2		72.2	Bo	65
	Sleepiness	2		72.5	A	00
201	0 Age	4	4	53.6	PJ	
	Gender	3	11 11 11	85.7		P
	Interest	[-1,1]		42.8+	P.J.	A
200	9 Emotion	5		44.0		P
	Negativity	2		71.2		24

Activities

Coaching & Conversion

Björn Schuller

BJÖRN SCHULLER | ANTON BATLINER

Alexandra Balahur-Dobrescu Maite Taboada Björn W. Schuller

mputational Social Sciences

Computational Methods for Affect Detection from Natural Language

D Springer

COMPUTATIONAL PARALINGUISTICS

EMOTION, AFFECT AND PERSONALITY IN SPEECH AND LANGUAGE PROCESSING

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

teşekkür ederim! vielen Dank! www.openaudio.eu

Björn Schuller

Abstract

Human state and trait recognition plays an ever increasing role in today's intelligent user interfaces lending them social competence for improved naturalness of the interaction. Obviously, such automatic assessment of user characteristics including emotion, personality or cognitive and physical load to name just a few is challenging. To ease this fact, it is broadly believed that a multimodal approach to the goal is beneficial. Here, we touch upon the question often arising when it comes to consideration of multiple modalities in computer-based human behavior analysis: the more the merrier? The modalities considered comprise the "usual suspects", namely speech, facial expression, and physiology alongside less typical candidates. Synergies are highlighted such as complementarity in view of emotion or personality primitives alongside arising problems of multimodal fusion. Examples include such from a series of recent public research competitions co-organized by the presenter.