

BOGAZİÇİ ÜNİVERSİTESİ

Introduction

- **Depression:** «a state of low mood and aversion to activity»
- In this study, we focus on extracting covariates of the target variable as highly informative features
- We also use CCA for audio-visual feature level fusion
- Use mode and range functionals to summarize low level descriptors

Background: Canonical Correlation Analysis

projections for each set. Let A and B denote two representations data, C denote covariance

$$\rho(A, B) = \sup_{w, v} corr(w^T A, v^T B) =$$

The optimization problem can be converted into a Lagrangian, which has the eigenform of

 $C_{AA}^{-1}C_{AB}C_{BB}^{-1}C_{BA}w = \lambda w, \quad \rho(A, B) = \sqrt{\lambda}.$

Corpus and Features

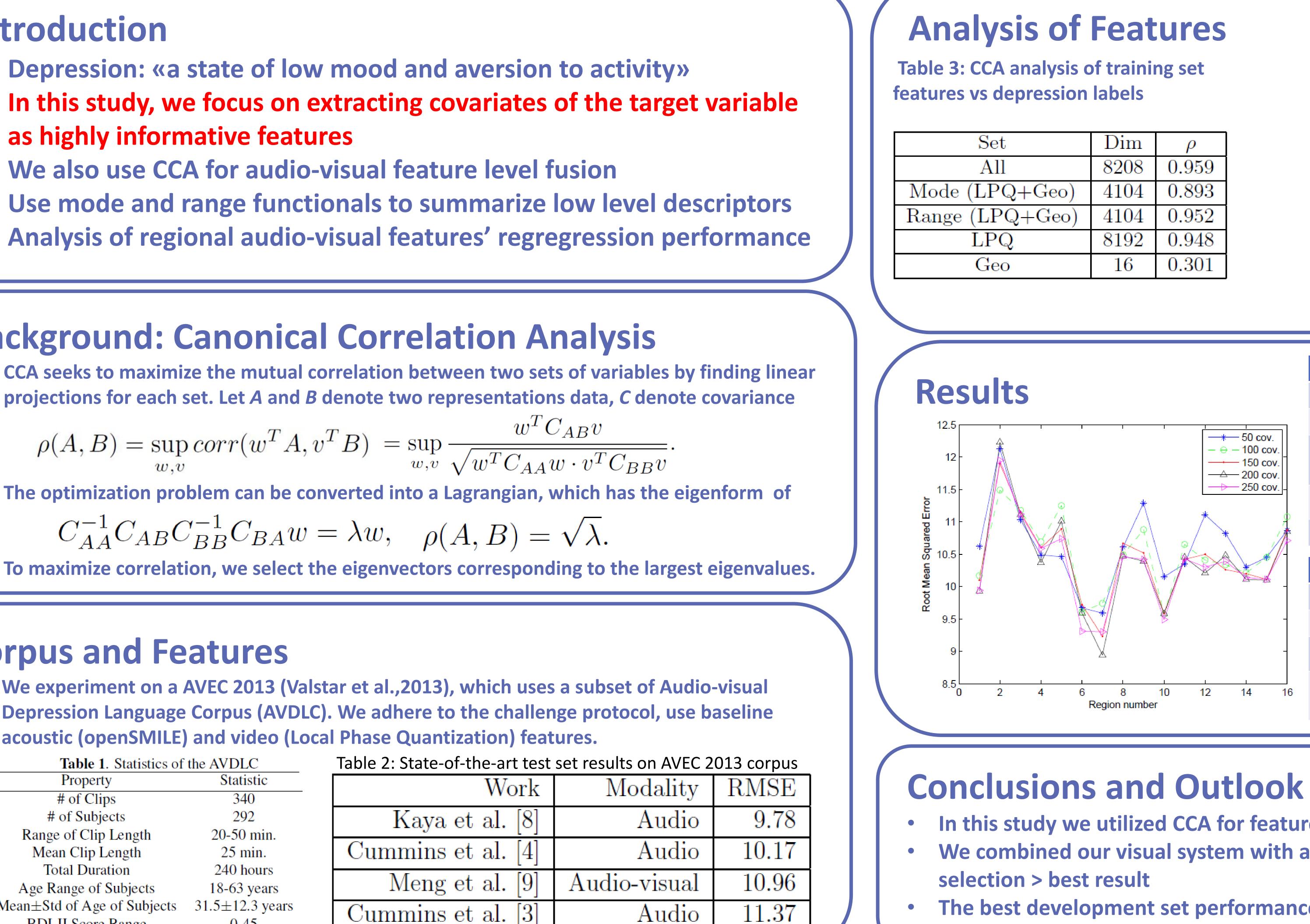
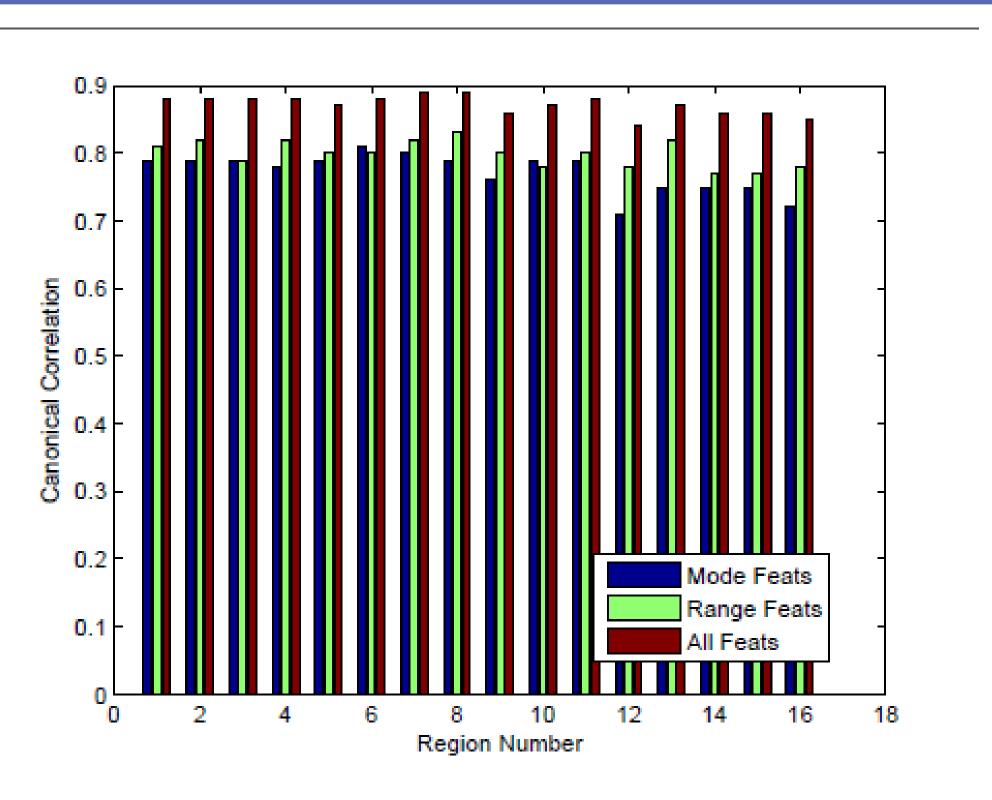

We experiment on a AVEC 2013 (Valstar et al., 2013), which uses a subset of Audio-visual **Depression Language Corpus (AVDLC).** We adhere to the challenge protocol, use baseline acoustic (openSMILE) and video (Local Phase Quantization) features.

Table 1. Statistics of the AVDLC Table 2	2: 31
Property Statistic	
# of Clips 340	
# of Subjects 292	K
Range of Clip Length 20-50 min.	
Mean Clip Length 25 min. Cur	nm
Total Duration 240 hours	ЛЛ
Age Range of Subjects 18-63 years	M
Mean \pm Std of Age of Subjects 31.5 \pm 12.3 years	nm
BDI-II Score Range 0-45	.1111

* Kaya et al. CCA Based Feature Selection with Application to Continuous Depression Recognition from Acoustic Speech Features. (ICASSP 2014)


EYES WHISPER DEPRESSION: A CCA BASED MULTIMODAL APPROACH

Heysem Kaya, Albert Ali Salah Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey {heysem, salah}@boun.edu.tr

Set	Dim	ρ
All	8208	0.959
ode (LPQ+Geo)	4104	0.893
ange (LPQ+Geo)	4104	0.952
LPQ	8192	0.948
Geo	16	0.301

System (on Develo

Audio baseline

Video baseline

Regional dep. cov.

Decision fusion of r

6 best regional regr

System (on Test Set

S1: 16 regional cova

S2: Best 3 perform

S3: CCA based aud

S4: Fusion of S2 wit from Kaya et al.*

- In this study we utilized CCA for feature extraction, and audio visual fusion We combined our visual system with audio system that use CCA for acoustic feature
- The best development set performance is obtained with inner facial regions (eyes and mouth area) : higher action information and more robust to registration errors

opment Set)		MAE	RMSE	
		8.66	10.75	
		8.74	10.72	
(16 dim)		6.90	8.61	
regional reg.		7.61	9.16	
ressors		7.07	8.56	
et)	Mod.	MAE	RMSE	
variates	Video	7.97	9.94	
ning regions	Video	7.86	9.72	
dio-visual fusion	AV	8.79	10.81	
th audio system	AV	7.68	9.44	