

MULTIMODAL ANALYSIS OF SPEECH PROSODY AND UPPER BODY **GESTURES USING HIDDEN SEMI-MARKOV MODELS**

Flif Bozkurt

Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey

INTRODUCTION

- A new multimodal analysis framework for
 - Relational model of *intonation* and gesture phrases
 - Synthesizing gestures to emphasize speech intonation
- Requirements
 - Model correlations between modalities
 - Able to produce gesture synthesis
 - Able to model realistic gesture durations
- Our solution
 - Takes gestures as states of a Markov chain
 - Takes prosody segments as observations of this Markov process
 - Introduces a gesture duration model

FEATURE EXTRACTION

Speech

- Prosody feature per frame
 - Normalized intensity
 - Normalized pitch
 - Pitch gain
 - Derivatives

Gesture

✤ Four joint angles per frame with derivatives.

UNIMODAL CLUSTERING

Speech

- Unsupervised clustering over prosody
- Using parallel HMMs

Gesture

- Semi-supervised clustering over joint angles
- Using parallel HMMs
- Iterative clustering

• Take gestures as states

Prosody

P(d | s_{t-k}=g₂)

A modified Viterbi decoder

the state duration model

g₂

Prosody

g1 ang₂

B g₃ g₄

g₁ esture g3 g4 • Take prosody as the *observations*

Gesture Synthesis

Forward likelihood function incorporating

 $\psi_i(j) = \max \max \{ \psi_{i-\tau}(i) + \log | a_{ij}d_j(\tau) \prod b_i(\xi_k) \}$

Introduce a gesture duration model

 $P(p_i | s_t=g_1)$

 $a_{41} = P(s_t = g_1 | s_{t-1} = g_4)$

- Three main tasks
 - Motion sequence generation
 - Create a pool of gestures
 - Apply unit selection to minimize
 - i. Joint angle differences at gesture transitions
 - ii. Duration differences
 - Gesture transition smoothing
 - Gesture sequence animation

EXPERIMENTAL RESULTS

- Multimodal upper body corpus (MVGL-MUB)
 - Single subject
 - 5 recordings/totally 20 minutes.
- Leave-one-recording-out

Objective Evaluations

Symmetric Kullbeck-Leibler (KL) divergence Minimum KL divergence for 8 prosody clusters.

States/ Branches	8	10	12	16
3	1.171	1.121	0.956	0.761
4	0.649	1.293	1.093	1.147
5	1.272	1.221	1.021	1.574

Subjective Evaluations

- ✤ A/B test over 9 participants
- 20 pairs of animation clips out of 72
- Clips in 40-120 seconds duration

A/B Pair	Average Preference	p-value<
Motion capture - Random	-1.130	0.0006
Motion capture – HSMM	0.019	0.9396
HSMM - Random	-0.796	0.004

CONTRIBUTIONS

- HSMM delivers a useful framework for gesture synthesis.
- Resulting animations are appealing
- Demos are available at link
 - http://mvgl.ku.edu.tr/icassp2013

CURRENT WORK

Model and synthesize affective gestures

- The USC CreativeIT database
- Continuous modeling of speech and affect

References

- E. Bozkurt, S. Asta, S. Ozkul, Y. Yemez, and E. Erzin, "Multimodal Analysis of Speech Prosody and Upper Body Gestures using Hidden Semi-Markov Models," in IEEE International Conference on Acoustics. Speech and Signal Processing, Vancouver, 2013.
- A. Metallinou, C. C. Lee, C. Busso, S. Carnicke, and S. S. Naravanan, "The USC CreativeIT Database : A Multimodal Database of Theatrical Improvisation," in Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality (MMC), 2010.