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Research Areas
Goals:

Studying how humans and other biological systems process 
information and solve problems from a computational viewpoint

Developing paradigms and techniques for science and 
engineering based on this study
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Neuroscience

Mathematical 
Analysis

Cognition and 
Behavior

Robotics

Current Focus

• Human in the loop robot skill synthesis
• Developmental Robotics
• Action Recognition/Understanding

Boolean Functions
Extremal Combinatorics
(Inverse)Reinforcement Learning

Mirror Neurons
Metal State Inference
Emotion

• Modeling Human Learning
• Motor Adaptation in full body motion 

Mirror Neurons

Multimodal neurons that respond when a monkey performs an action (e.g. grasping)

AND
When they observe the execution of a similar action performed by others 

First found in ventral premotor cortex (F5); later in dorsal premotor cortex (F2) and even in 
the primary motor cortex (F1) and in the parietal cortex cortex (PF) 

PART I. Action Production & Perception

 Perception and Action systems are tightly coupled 

 Humans are likely to have a Mirror Neuron System that may 
share the same properties with monkey mirror neurons 

 May give clues about Human Cognition

Why Mirror Neurons are so ‘important’?

 May give clues about Human Cognition 

 May give clues about Language Evolution

 For engineering and robotics: 

 Action recognition and generation share common 
mechanisms. Utilize existing resources

Functions: Unknown

Experimental Data: Mostly not quantitative

More than two decades has past after the discovery of  
mirror neurons but still…

How much is known?

Experimental Data: Mostly not quantitative 

Developmental Course: Mostly not explored

Computational Models: Not satisfactory

Myths: Many

Key Ingredients  of MNS model (Oztop & Arbib 2002)

Self-observation mediates formation of mirror neurons: Mirror neurons 
develop by associating the executed motor (grasp) program with the visual 
stimuli generated

Object centered representation of action parameters

Mirror Neuron System Model

AIP - grasp 
ff d

Adult-like grasping
execution

slide modified from Arbib

F5 - grasp 
commands in
premotor cortex
Giacomo Rizzolatti

affordances
in parietal cortex
Hideo Sakata

Ventral pathway

Dorsal pathway
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Visual Analysis Schema

Object 
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extraction

Motor 
program
(G )

AIP

Object features

Object recognition

IT
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AIP
Object affordance -
hand state 

AIP

Postulated connections

Anatomically 
established 
connections

Core Mirror Circuit

Reach and Grasp 

(Grasp)

Motor 
execution

F5canonical

M1

Object 
location

Motor 
program
(Reach)

F4

MIP/LIP/VIP

STS

Hand shape 
recognition 
& Hand 
motion 
detection

association

Mirror 
Feedback

PF

F5mirror

Action 
recognition 
(Mirror 
Neurons)Hand-Object 

spatial relation 
analysis
PG

Object centered representation of the hand

Velocity (v(t))

Distance (d(t))

Aperture (a(t))

Thumb angle 2 
( 4(t))

Thumb angle 1 
(o3(t)) Grasp Axis

Object opposition axis

Hand State captures the 
hand and its relation to 
the target object.
H(t) = (d(t), v(t), a(t), 
o1(t), o2(t), o3(t), o4(t))
where
d(t): distance to target
v(t): tangential velocity
a(t): Aperture 
o1(t): Angle between the 
object axis and the (index 
finger tip – thumb tip) vector 

Axis disparity 2 (arccos(o2(t)))

Axis disparity 1 (arccos(o1(t)))

(o4(t))

Hand opposition axis 
(thumb, index fingertip) 

Hand opposition axis 
(thumb, index knuckle) 

o2(t): Angle between the 
object axis and the (index 
finger knuckle – thumb tip) 
vector 
o3(t), o4(t): The two angles 
defining how close the thumb 
is to the hand as measured 
relative to the side of the hand 
and to the inner surface of the 
palm.

H(t) = (d(t), v(t), a(t), o1(t), o2(t), o3(t), o4(t)) 

Note that the whole history of H(t) during a grasp is required to 
represent the grasp.

Summary & Current Focus

The key elements of the model were:

Mirror Neurons are formed by the association of the neural 
code for self-executed grasps with the neural code for the
visual stimuli generated

Hand in action is encoded using an object centered 
representation that allows generalization to others’ hands.representation that allows generalization to others  hands.

But did not explain why the learning take place (i.e. what are 
the mirror neurons good for?)

Related papers: Oztop, Wolpert, Kawato (2005); Oztop, Kawato, Arbib 
(2006); Oztop, Kawato, Arbib (2013) 

Current Focus and Funding: Greek-Turkish Bilateral Project with Raos Vassilis, 
FORTH) (TUBITAK-GSRT “Neurophysiology and computational modeling of 
action-observation”) is underway to find the role of mirror neurons in 
representing control related parameters of observed and executed actions 

PART II. Robot skill synthesis via human motor learning

 Use human sensorimotor learning ability to obtain robot behaviors 

 Include the human in the control loop

 May ask human to do extensive training

 Utilize the human brain as the adaptive controller

Human ~ 
Ad ti C t ll

Multimodal OK!

1616

Motor command   (u)Human Motion (m) 

Robot state       (s)
Feedback to human 
sensory system (f) 

Adaptive Controller

Feedforward
Interface

Feedback
Interface

Sensorimotor learning 

 Sensorimotor learning is fundamental for adaptive and intelligent behavior

 Driving a car

 Using a pair of chopsticks 

 Using a computer mouse

 …

 …

 …

Feedback to human

1717

Motor command   (u)Human Motion (m) 

Robot state       (s)
Feedback to human 
sensory system (f) 

Feedforward
Interface

Feedback
Interface

Behavior synthesis for autonomy

For autonomous operation, the key

issue is transferring the control policy

learnt by human to the robot

Feedback to human

Human ~ 
Adaptive Controller

Robot Learning: 
Learn π: s → u

1818

Motor command   (u)Human Motion (m) 

Robot state       (s)
Feedback to human 
sensory system (f) 

Feedforward
Interface

Feedback
Interface
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Why should this paradigm work?

The ability of the brain to learn novel control tasks by 
forming internal models. The robot can simply be 
considered as another tool (e.g. as in snowboarding, 
driving, using chopsticks)driving, using chopsticks)

The flexibility of the body schema; extensive training 
on the human side should modify the body schema 
so that the robot can be controlled naturally

1919

First example: ball swapping

Ball swapping interface

Feedback to human

Robot Learning: 
Learn π: s → uHuman ~ 

Adaptive Controller

2121

Motor command   (u)Human Motion (m) 

Robot state       (s)
Feedback to human 
sensory system (f) 

Feedforward
Interface

Feedback
Interface

VisualEyez Output

30Hz

Inverse Kinematics

Input 
Driven

Marker 
Positions

Marker 
Positions

VizualEyez data

Finger tip positions

Human hand 
movement

Data Capture

Build hand 
Referenceframe

C lib ti

Human control interface

Gifu Hand Controller 

+10Hz Input 
Driven

Central Controller 

30HzUser Interface

Gifu Hand Joint Angles

Gifu Hand Joint Angles

Hand 
Status

commands

System info

Finger tip positions
For Gifu Hand

Raw joint angles

Desired joint angles

Gifu Hand actuation

Calibration

Inverse
Kinematics

Filtering

PD Control

Human sensorimotor learning…

2323

Finally human learns to swap balls

2424
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Autonomous ball swapping 

2626

Open loop control
u=π(time) 

Oztop, Lin, Kawato, Cheng (ICRA 2007)

Reaching without falling 

Babic J, Hale J, Oztop  E, (Adaptive Behaviour 2011)

Autonomous stable trajectory tracking

3232

Summary & Current focus

Obtaining robot skills via human sensorimotor learning works
Help built intuitive smart prosthetics
Can be used to probe human motor control
Shed light on mechanisms of internal models, agency and 

body image

3333

Current Focus & Funding:
Supported by Marie Curie FP7 Converge (2012-2016) project
More intuitive state feedback  to the human 
Simultaneous human and machine control
Transferring force based skills (w/J. Babic, JSI, Slovenia)
Other tasks, e.g. walking

Feedback to 
human sensory 

system (f) 
Feedback
Interface
Feedback
Interface

Simultanous learning

Net Motor 
command   
(u)

Human Motion (m) 

Human 
Control 
Human 
Control 

Feedforward
Interface

Feedforward
Interface

Machine 
Control
Machine 
Control

Robot 
State 

(s)
um

++

uh

wh

wm

3434

Simultaneous Learning of “pole swing-up 
and pole balance”

 Online robot learning with simultaneous human and machine control
 State dependent dynamic control sharing 

Zamani, Oztop (submitted) 3737
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PART III. Dynamic Motor Primitives (DMP) for 
behavior understanding

Work in collaboration with ATR, Japan 
supported by Ministry of Internal Affairs 
and Communications (MIC) of Japan.
http://www.cns.atr.jp/dbi/en/

The project aims to establish dynamic 
brain imaging techniques based on non-
i i b i ti it t f

3838

invasive brain activity measurement for 
daily life brain-machine interface (BMI) 
using real-time brain decoding via 
statistics and large-scale computing

Contributing Organizations:  
ATR,  NTT, Keio University,
Shimadzu Corp. Sekisui House, Ltd.

DMP based segmentation is proposed for 
automatic tagging/labeling of behaviors 
for automatic BMI

From (Ijspeert et al. 2013):

‘The basic idea of our approach is to use an analytically well-understood dynamical system with 
convenient stability properties and modulate it with nonlinear terms such that it achieves a 
desired attractor behavior (Ijspeert et al., 2003)’

As one of the simplest possible systems, a damped spring model is chosen

Dynamic Motor Primitives

( )y fy yK Dgτ = − − + 

g

y

time
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time

0y

suitable perturbationf =

When we observe an action, we record  goal (g), duration (~ 1/τ) and the position (y) 
at each time step. Since we assume                                                         must hold at 
each time step we have the following consistency condition  

Taking f as a linear function of nonlinear basis functions we have

Dynamic Motor Primitives: learning
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Usually used for

 Representing robot trajectories
 Robotic imitation
 Robot learning in policy space

 Gives a compact representation
 Can be made time independent

Application of Dynamic Motor Primitives

Ca be ade t e depe de t
 Can be scaled 
 Can be easily directed to 
different goals 

Can also be used for recognition
 initial work due to Ijspeert et al. 
but no extensive work

Ijspeert, Nakanishi, Schaal 
(ICRA 2003)

New IDEA: Automatic segmentation with DMPs

Concept:
A long trajectory x, should be better represented with sequentially order ed multiple DMPs that 
take intro account the complexity of the trajectory they represent 

Assumption: 
The number of DMPs (e.g. 3) and the total number of number of degrees of freedom 
(N, # weight parameters)  are fixed and given.

A h

DMP1 DMP2 DMP3

Approach: 
-Divide the trajectory into equal pieces and determine # of weights for each DMP
OR
- Give equal number of weight parameters for each DMP; but determine their span (i.e. t1 t2 below)

DMP1 DMP2 DMP3

time

t1 t2

Preliminary results with 2D trajectories

input
2 DMPs

3 DMPs 4 DMPs
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Using Kinect Data from the Smart House for
Automatic Segmentation

Preliminary results from kinect skeleton data…

Computer Mouse data Kinect data:

2 coordinates 
2 composite DMPs  

20 x 3 (20x2) coordinates in Kinect
60 (40 composite DMPs)  

But essentially the same problem

Kinect data representation with a DMP

DMP Reproduction and Kinect Skeleton DataOriginal video from  Kinect Camera

Two DMPs per node, 32 bases functions per DMP; there are 20 nodes in a Kinect Skeleton 
Data
Therefore we use 2x32x20 = 1280 parameters to specify this movement
Note that we could easily do dimensionality reduction! 

3-4 dimension would suffice ~ 200 parameters

Automatic primitive detection: Example I

Motor primitives in sequenceOriginal video from  Kinect Camera Motor primitives in sequenceOriginal video from  Kinect Camera

Automatic primitive detection: Example II

Recalled action 
(one of the actions used in training)

Original video from  Kinect Camera

Recognition with Kinect data is also possible

Test action 
(not used in training)

Summary & Current focus

DMP based recognition is well suited for human action recognition
DMP based segmentation produced encouraging results but more 

work is needed
Autonomous segmentation has the potential to create fully 

autonomous daily-life BMI.

5050

Current Focus & Funding:
Funded by a contract in H23 with the Ministry of Internal Affairs and
Communications, Japan, entitled ‘Novel and innovative R&D making use of brain 
structures’.

Improving DMP based segmentation
Evaluations for DMP based recognition via comparisons with 
HMM based recognition
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THANK YOU FOR YOUR ATTENTION!
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THANK YOU FOR YOUR ATTENTION!


